Euler 018 c++ Solution

Maximum path sum I

Problem

https:projecteuler.net/problem=18

By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.

    3
   7 4
  2 4 6
 8 5 9 3

That is, 3 + 7 + 4 + 9 = 23.

Find the maximum total from top to bottom of the triangle below:

               75
              95 64
             17 47 82
            18 35 87 10
           20 04 82 47 65
          19 01 23 75 03 34
         88 02 77 73 07 63 67
        99 65 04 28 06 16 70 92
       41 41 26 56 83 40 80 70 33
      41 48 72 33 47 32 37 16 94 29
     53 71 44 65 25 43 91 52 97 51 14
    70 11 33 28 77 73 17 78 39 68 17 57
   91 71 52 38 17 14 91 43 58 50 27 29 48
  63 66 04 68 89 53 67 30 73 16 69 87 40 31
 04 62 98 27 23 09 70 98 73 93 38 53 60 04 23

NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! :wink:

Answer: 1074

Solution

euler018.cpp

#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>

static const char* test_data_fname = "./src/euler_18_test_data.txt";
static const char* data_fname = "./src/euler_18_data.txt";

int maximum_path_sum_1(const char* fname)
{
  std::ifstream fin(fname);

  if( !fin.is_open()){
    std::cerr << "Failed to open input file: " << fname << std::endl;
    return -1;
  }

  std::vector<std::vector<int> > lines;

  for( std::string line ; std::getline(fin,line);){
    std::stringstream ss(line);
    std::string number;
    std::vector<int> inner;

    while (std::getline(ss,number,',')) {
      inner.push_back(std::stoi(number));
    }
    lines.push_back(inner);
  }

  for( int i = lines.size()-1; i > 0 ; --i){
    for( int j = 0 ; j < i; j++){
      if( lines[i][j] > lines[i][j+1] ){
        lines[i-1][j] += lines[i][j];
      }else{
        lines[i-1][j] += lines[i][j+1];
      }
    }
  }

  return lines[0][0];
}

#if ! defined UNITTEST_MODE
int main(int argc, char const *argv[])
{
  std::cout << "Answer: " << maximum_path_sum_1(data_fname) << std::endl;
}
#endif // #if ! defined UNITTEST_MODE

See Also

# cpp go java php ruby rust javascript
1
2
3  
4    
5    
6      
7          
8          
9          
10          
11          
12          
# cpp ruby
13
14
15
16
17
18
19
20  
21  
22  
23  
24