Euler 012 c++ Solution

Highly divisible triangular number

Problem

https://projecteuler.net/problem=12

The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be

\[1 + 2 + 3 + 4 + 5 + 6 + 7 = 28\]

The first ten terms would be:

\[1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...\]

Let us list the factors of the first seven triangle numbers:

1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28

We can see that 28 is the first triangle number to have over five divisors.

What is the value of the first triangle number to have over five hundred divisors?

Answer: 76576500

Solution

euler012.cpp

#include <iostream>
#include <cstdint>

using namespace std;

uint64_t largest_prime_factor(uint64_t number)
{
  uint64_t answer = 1;
  uint64_t point = 3;
  uint64_t divisor = number;

  while ( 0 == (divisor % 2)) {
    answer = 2;
    divisor = divisor/2;
  }

  while (divisor != 1) {
      while ( 0 == (divisor % point)) {
        answer = point;
        divisor = divisor/point;
      }
      point += 2;
  }

  return answer;
}

#if ! defined UNITTEST_MODE
int main(int argc, char const *argv[])
{
  std::cout << "Answer: " << largest_prime_factor(600851475143) << std::endl;
}
#endif // #if ! defined UNITTEST_MODE

See Also

# cpp go java php ruby rust javascript
1
2
3  
4    
5    
6      
7          
8          
9          
10          
11          
12          
# cpp ruby
13
14
15
16
17
18
19
20  
21  
22  
23  
24