Euler 009 c++ Solution

Special Pythagorean triplet

Problem

https://projecteuler.net/problem=9

A Pythagorean triplet is a set of three natural numbers,

\[a < b < c\]

for which,

\[a^2 + b^2 = c^2\]

For example:

\[3^2 + 4^2 = 9 + 16 = 25 = 5^2\]

There exists exactly one Pythagorean triplet for which

\[a + b + c = 1000\]

Find the product \(abc \).

Answer: 31875000 (a:200 b:375 c:425)

Solution

euler009.cpp

#include <iostream>

using namespace std;

int special_pyg_brute()
{
  for(int a = 500; --a; ){
    for(int b = 500; --b; ){
      int c = 1000 - b - a;
      if( a < b && (0==(a*a)+(b*b)-(c*c)) ){
        return a*b*c;
      }
    }
  }
  return 0;
}

const static int g_n = 1000;

int special_pyg_opt()
{
  // Take advantage of the actual maximum range
  // i.e. a can only have a maximum value of n/3 to
  // satisfy a < b < c && (a+b+c)==n
  for(int a = (g_n/3); --a; ){
    for(int b = (g_n/2); --b; ){
      int c = g_n - b - a;
      if( (a*a)+(b*b) == (c*c) ){
        return a*b*c;
      }
    }
  }
  return 0;
}

int main( int argc, char* argv[] )
{
  std::cout << "Answer: " << special_pyg_brute() << std::endl;
  std::cout << "Answer: " << special_pyg_opt() << std::endl;
}

See Also

# cpp go java php ruby rust javascript
1
2
3  
4    
5    
6      
7          
8          
9          
10          
11          
12          
# cpp ruby
13
14
15
16
17
18
19
20  
21  
22  
23  
24