Problem https://projecteuler.net/problem=8 The four adjacent digits in the 1000-digit number that have the greatest product are: \[9 × 9 × 8 × 9 = 5832\] 73167176531330624919225119674426574742355349194934 96983520312774506326239578318016984801869478851843 85861560789112949495459501737958331952853208805511 12540698747158523863050715693290963295227443043557 66896648950445244523161731856403098711121722383113 62229893423380308135336276614282806444486645238749 30358907296290491560440772390713810515859307960866 70172427121883998797908792274921901699720888093776 65727333001053367881220235421809751254540594752243 52584907711670556013604839586446706324415722155397 53697817977846174064955149290862569321978468622482 83972241375657056057490261407972968652414535100474 82166370484403199890008895243450658541227588666881 16427171479924442928230863465674813919123162824586 17866458359124566529476545682848912883142607690042 24219022671055626321111109370544217506941658960408 07198403850962455444362981230987879927244284909188 84580156166097919133875499200524063689912560717606 05886116467109405077541002256983155200055935729725 71636269561882670428252483600823257530420752963450 Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product? Answer: 23514624000 Solution euler008.cpp // https://projecteuler.net/problem=8 // Answer: 23514624000 // The four adjacent digits in the 1000-digit number that have the // greatest product are 9 × 9 × 8 × 9 = 5832. // // 73167176531330624919225119674426574742355349194934 // 96983520312774506326239578318016984801869478851843 // 85861560789112949495459501737958331952853208805511 // 12540698747158523863050715693290963295227443043557 // 66896648950445244523161731856403098711121722383113 // 62229893423380308135336276614282806444486645238749 // 30358907296290491560440772390713810515859307960866 // 70172427121883998797908792274921901699720888093776 // 65727333001053367881220235421809751254540594752243 // 52584907711670556013604839586446706324415722155397 // 53697817977846174064955149290862569321978468622482 // 83972241375657056057490261407972968652414535100474 // 82166370484403199890008895243450658541227588666881 // 16427171479924442928230863465674813919123162824586 // 17866458359124566529476545682848912883142607690042 // 24219022671055626321111109370544217506941658960408 // 07198403850962455444362981230987879927244284909188 // 84580156166097919133875499200524063689912560717606 // 05886116467109405077541002256983155200055935729725 // 71636269561882670428252483600823257530420752963450 // Find the thirteen adjacent digits in the 1000-digit number that // have the greatest product. What is the value of this product? #include <iostream> #include <cstdint> #include "simple_timer.h" static const int digits[] = { 7,3,1,6,7,1,7,6,5,3,1,3,3,0,6,2,4,9,1,9,2,2,5,1,1, 9,6,7,4,4,2,6,5,7,4,7,4,2,3,5,5,3,4,9,1,9,4,9,3,4, 9,6,9,8,3,5,2,0,3,1,2,7,7,4,5,0,6,3,2,6,2,3,9,5,7, 8,3,1,8,0,1,6,9,8,4,8,0,1,8,6,9,4,7,8,8,5,1,8,4,3, 8,5,8,6,1,5,6,0,7,8,9,1,1,2,9,4,9,4,9,5,4,5,9,5,0, 1,7,3,7,9,5,8,3,3,1,9,5,2,8,5,3,2,0,8,8,0,5,5,1,1, 1,2,5,4,0,6,9,8,7,4,7,1,5,8,5,2,3,8,6,3,0,5,0,7,1, 5,6,9,3,2,9,0,9,6,3,2,9,5,2,2,7,4,4,3,0,4,3,5,5,7, 6,6,8,9,6,6,4,8,9,5,0,4,4,5,2,4,4,5,2,3,1,6,1,7,3, 1,8,5,6,4,0,3,0,9,8,7,1,1,1,2,1,7,2,2,3,8,3,1,1,3, 6,2,2,2,9,8,9,3,4,2,3,3,8,0,3,0,8,1,3,5,3,3,6,2,7, 6,6,1,4,2,8,2,8,0,6,4,4,4,4,8,6,6,4,5,2,3,8,7,4,9, 3,0,3,5,8,9,0,7,2,9,6,2,9,0,4,9,1,5,6,0,4,4,0,7,7, 2,3,9,0,7,1,3,8,1,0,5,1,5,8,5,9,3,0,7,9,6,0,8,6,6, 7,0,1,7,2,4,2,7,1,2,1,8,8,3,9,9,8,7,9,7,9,0,8,7,9, 2,2,7,4,9,2,1,9,0,1,6,9,9,7,2,0,8,8,8,0,9,3,7,7,6, 6,5,7,2,7,3,3,3,0,0,1,0,5,3,3,6,7,8,8,1,2,2,0,2,3, 5,4,2,1,8,0,9,7,5,1,2,5,4,5,4,0,5,9,4,7,5,2,2,4,3, 5,2,5,8,4,9,0,7,7,1,1,6,7,0,5,5,6,0,1,3,6,0,4,8,3, 9,5,8,6,4,4,6,7,0,6,3,2,4,4,1,5,7,2,2,1,5,5,3,9,7, 5,3,6,9,7,8,1,7,9,7,7,8,4,6,1,7,4,0,6,4,9,5,5,1,4, 9,2,9,0,8,6,2,5,6,9,3,2,1,9,7,8,4,6,8,6,2,2,4,8,2, 8,3,9,7,2,2,4,1,3,7,5,6,5,7,0,5,6,0,5,7,4,9,0,2,6, 1,4,0,7,9,7,2,9,6,8,6,5,2,4,1,4,5,3,5,1,0,0,4,7,4, 8,2,1,6,6,3,7,0,4,8,4,4,0,3,1,9,9,8,9,0,0,0,8,8,9, 5,2,4,3,4,5,0,6,5,8,5,4,1,2,2,7,5,8,8,6,6,6,8,8,1, 1,6,4,2,7,1,7,1,4,7,9,9,2,4,4,4,2,9,2,8,2,3,0,8,6, 3,4,6,5,6,7,4,8,1,3,9,1,9,1,2,3,1,6,2,8,2,4,5,8,6, 1,7,8,6,6,4,5,8,3,5,9,1,2,4,5,6,6,5,2,9,4,7,6,5,4, 5,6,8,2,8,4,8,9,1,2,8,8,3,1,4,2,6,0,7,6,9,0,0,4,2, 2,4,2,1,9,0,2,2,6,7,1,0,5,5,6,2,6,3,2,1,1,1,1,1,0, 9,3,7,0,5,4,4,2,1,7,5,0,6,9,4,1,6,5,8,9,6,0,4,0,8, 0,7,1,9,8,4,0,3,8,5,0,9,6,2,4,5,5,4,4,4,3,6,2,9,8, 1,2,3,0,9,8,7,8,7,9,9,2,7,2,4,4,2,8,4,9,0,9,1,8,8, 8,4,5,8,0,1,5,6,1,6,6,0,9,7,9,1,9,1,3,3,8,7,5,4,9, 9,2,0,0,5,2,4,0,6,3,6,8,9,9,1,2,5,6,0,7,1,7,6,0,6, 0,5,8,8,6,1,1,6,4,6,7,1,0,9,4,0,5,0,7,7,5,4,1,0,0, 2,2,5,6,9,8,3,1,5,5,2,0,0,0,5,5,9,3,5,7,2,9,7,2,5, 7,1,6,3,6,2,6,9,5,6,1,8,8,2,6,7,0,4,2,8,2,5,2,4,8, 3,6,0,0,8,2,3,2,5,7,5,3,0,4,2,0,7,5,2,9,6,3,4,5,0,-1 }; template <int len> uint64_t largest_product_opt() { int idx = 0; uint64_t answer = 0; while( -1 != digits[idx+len] ) { uint64_t tmp = 1; for( int i = 0 ; i < len ; i++ ){ tmp *= digits[idx+i]; } answer = std::max(tmp,answer); idx++; } return answer; } template <> uint64_t largest_product_opt<4>() { int idx = 0; uint64_t answer = 0; while( -1 != digits[idx+4] ) { answer = std::max(((uint64_t)digits[idx] * digits[idx+1] * digits[idx+2] * digits[idx+3]),answer); idx++; } return answer; } template <> uint64_t largest_product_opt<13>() { int idx = 0; uint64_t answer = 0; while( -1 != digits[idx+13] ) { answer = std::max(((uint64_t)digits[idx] * digits[idx+1] * digits[idx+2] * digits[idx+3] * digits[idx+4] * digits[idx+5] * digits[idx+6] * digits[idx+7] * digits[idx+8] * digits[idx+9] * digits[idx+10] * digits[idx+11] * digits[idx+12]),answer); idx++; } return answer; } uint64_t largest_product_brute(int len) { int idx = 0; uint64_t answer = 0; while( -1 != digits[idx+len] ) { uint64_t tmp = 1; for( int i = 0 ; i < len ; i++ ){ tmp *= digits[idx+i]; } answer = std::max(tmp,answer); idx++; } return answer; } #if ! defined UNITTEST_MODE int main(int argc, char const *argv[]) { { simple_timer x("largest_product_brute", true); std::cout << "Answer: " << largest_product_brute(13) << std::endl; } { simple_timer x("largest_product_opt", true); std::cout << "Answer: " << largest_product_opt<13>() << std::endl; } return 0; } #endif See Also # cpp go java php ruby rust javascript 1 2 3 4 5 6 7 8 9 10 11 12 # cpp ruby 13 14 15 16 17 18 19 20 21 22 23 24 Euler project introduction My Euler Repo