Euler 008 c++ Solution

Largest product in a series.

Problem

https://projecteuler.net/problem=8

The four adjacent digits in the 1000-digit number that have the greatest product are:

\[9 × 9 × 8 × 9 = 5832\]
73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843
85861560789112949495459501737958331952853208805511
12540698747158523863050715693290963295227443043557
66896648950445244523161731856403098711121722383113
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450

Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product?

Answer: 23514624000

Solution

euler008.cpp

// https://projecteuler.net/problem=8

// Answer: 23514624000

// The four adjacent digits in the 1000-digit number that have the
// greatest product are 9 × 9 × 8 × 9 = 5832.
//
// 73167176531330624919225119674426574742355349194934
// 96983520312774506326239578318016984801869478851843
// 85861560789112949495459501737958331952853208805511
// 12540698747158523863050715693290963295227443043557
// 66896648950445244523161731856403098711121722383113
// 62229893423380308135336276614282806444486645238749
// 30358907296290491560440772390713810515859307960866
// 70172427121883998797908792274921901699720888093776
// 65727333001053367881220235421809751254540594752243
// 52584907711670556013604839586446706324415722155397
// 53697817977846174064955149290862569321978468622482
// 83972241375657056057490261407972968652414535100474
// 82166370484403199890008895243450658541227588666881
// 16427171479924442928230863465674813919123162824586
// 17866458359124566529476545682848912883142607690042
// 24219022671055626321111109370544217506941658960408
// 07198403850962455444362981230987879927244284909188
// 84580156166097919133875499200524063689912560717606
// 05886116467109405077541002256983155200055935729725
// 71636269561882670428252483600823257530420752963450

// Find the thirteen adjacent digits in the 1000-digit number that
// have the greatest product. What is the value of this product?

#include <iostream>
#include <cstdint>

#include "simple_timer.h"

static const int digits[] =
{
7,3,1,6,7,1,7,6,5,3,1,3,3,0,6,2,4,9,1,9,2,2,5,1,1,
9,6,7,4,4,2,6,5,7,4,7,4,2,3,5,5,3,4,9,1,9,4,9,3,4,
9,6,9,8,3,5,2,0,3,1,2,7,7,4,5,0,6,3,2,6,2,3,9,5,7,
8,3,1,8,0,1,6,9,8,4,8,0,1,8,6,9,4,7,8,8,5,1,8,4,3,
8,5,8,6,1,5,6,0,7,8,9,1,1,2,9,4,9,4,9,5,4,5,9,5,0,
1,7,3,7,9,5,8,3,3,1,9,5,2,8,5,3,2,0,8,8,0,5,5,1,1,
1,2,5,4,0,6,9,8,7,4,7,1,5,8,5,2,3,8,6,3,0,5,0,7,1,
5,6,9,3,2,9,0,9,6,3,2,9,5,2,2,7,4,4,3,0,4,3,5,5,7,
6,6,8,9,6,6,4,8,9,5,0,4,4,5,2,4,4,5,2,3,1,6,1,7,3,
1,8,5,6,4,0,3,0,9,8,7,1,1,1,2,1,7,2,2,3,8,3,1,1,3,
6,2,2,2,9,8,9,3,4,2,3,3,8,0,3,0,8,1,3,5,3,3,6,2,7,
6,6,1,4,2,8,2,8,0,6,4,4,4,4,8,6,6,4,5,2,3,8,7,4,9,
3,0,3,5,8,9,0,7,2,9,6,2,9,0,4,9,1,5,6,0,4,4,0,7,7,
2,3,9,0,7,1,3,8,1,0,5,1,5,8,5,9,3,0,7,9,6,0,8,6,6,
7,0,1,7,2,4,2,7,1,2,1,8,8,3,9,9,8,7,9,7,9,0,8,7,9,
2,2,7,4,9,2,1,9,0,1,6,9,9,7,2,0,8,8,8,0,9,3,7,7,6,
6,5,7,2,7,3,3,3,0,0,1,0,5,3,3,6,7,8,8,1,2,2,0,2,3,
5,4,2,1,8,0,9,7,5,1,2,5,4,5,4,0,5,9,4,7,5,2,2,4,3,
5,2,5,8,4,9,0,7,7,1,1,6,7,0,5,5,6,0,1,3,6,0,4,8,3,
9,5,8,6,4,4,6,7,0,6,3,2,4,4,1,5,7,2,2,1,5,5,3,9,7,
5,3,6,9,7,8,1,7,9,7,7,8,4,6,1,7,4,0,6,4,9,5,5,1,4,
9,2,9,0,8,6,2,5,6,9,3,2,1,9,7,8,4,6,8,6,2,2,4,8,2,
8,3,9,7,2,2,4,1,3,7,5,6,5,7,0,5,6,0,5,7,4,9,0,2,6,
1,4,0,7,9,7,2,9,6,8,6,5,2,4,1,4,5,3,5,1,0,0,4,7,4,
8,2,1,6,6,3,7,0,4,8,4,4,0,3,1,9,9,8,9,0,0,0,8,8,9,
5,2,4,3,4,5,0,6,5,8,5,4,1,2,2,7,5,8,8,6,6,6,8,8,1,
1,6,4,2,7,1,7,1,4,7,9,9,2,4,4,4,2,9,2,8,2,3,0,8,6,
3,4,6,5,6,7,4,8,1,3,9,1,9,1,2,3,1,6,2,8,2,4,5,8,6,
1,7,8,6,6,4,5,8,3,5,9,1,2,4,5,6,6,5,2,9,4,7,6,5,4,
5,6,8,2,8,4,8,9,1,2,8,8,3,1,4,2,6,0,7,6,9,0,0,4,2,
2,4,2,1,9,0,2,2,6,7,1,0,5,5,6,2,6,3,2,1,1,1,1,1,0,
9,3,7,0,5,4,4,2,1,7,5,0,6,9,4,1,6,5,8,9,6,0,4,0,8,
0,7,1,9,8,4,0,3,8,5,0,9,6,2,4,5,5,4,4,4,3,6,2,9,8,
1,2,3,0,9,8,7,8,7,9,9,2,7,2,4,4,2,8,4,9,0,9,1,8,8,
8,4,5,8,0,1,5,6,1,6,6,0,9,7,9,1,9,1,3,3,8,7,5,4,9,
9,2,0,0,5,2,4,0,6,3,6,8,9,9,1,2,5,6,0,7,1,7,6,0,6,
0,5,8,8,6,1,1,6,4,6,7,1,0,9,4,0,5,0,7,7,5,4,1,0,0,
2,2,5,6,9,8,3,1,5,5,2,0,0,0,5,5,9,3,5,7,2,9,7,2,5,
7,1,6,3,6,2,6,9,5,6,1,8,8,2,6,7,0,4,2,8,2,5,2,4,8,
3,6,0,0,8,2,3,2,5,7,5,3,0,4,2,0,7,5,2,9,6,3,4,5,0,-1
};

template <int len> uint64_t largest_product_opt()
{
  int idx = 0;
  uint64_t answer = 0;

  while( -1 != digits[idx+len] )
  {
    uint64_t tmp = 1;
    for( int i = 0 ; i < len ; i++ ){
      tmp *= digits[idx+i];
    }

    answer = std::max(tmp,answer);
    idx++;
  }
  return answer;
}

template <> uint64_t largest_product_opt<4>()
{
  int idx = 0;
  uint64_t answer = 0;

  while( -1 != digits[idx+4] )
  {
    answer = std::max(((uint64_t)digits[idx] *
                  digits[idx+1] *
                  digits[idx+2] *
                  digits[idx+3]),answer);
    idx++;
  }

  return answer;
}

template <> uint64_t largest_product_opt<13>()
{
  int idx = 0;
  uint64_t answer = 0;

  while( -1 != digits[idx+13] )
  {
    answer = std::max(((uint64_t)digits[idx]
                  * digits[idx+1]
                  * digits[idx+2]
                  * digits[idx+3]
                  * digits[idx+4]
                  * digits[idx+5]
                  * digits[idx+6]
                  * digits[idx+7]
                  * digits[idx+8]
                  * digits[idx+9]
                  * digits[idx+10]
                  * digits[idx+11]
                  * digits[idx+12]),answer);
    idx++;
  }

  return answer;
}

uint64_t largest_product_brute(int len)
{
  int idx = 0;
  uint64_t answer = 0;

  while( -1 != digits[idx+len] )
  {
    uint64_t tmp = 1;
    for( int i = 0 ; i < len ; i++ ){
      tmp *= digits[idx+i];
    }

    answer = std::max(tmp,answer);
    idx++;
  }
  return answer;
}

#if ! defined UNITTEST_MODE
int main(int argc, char const *argv[])
{
  {
    simple_timer x("largest_product_brute", true);
    std::cout << "Answer: " << largest_product_brute(13) << std::endl;
  }
  {
    simple_timer x("largest_product_opt", true);
    std::cout << "Answer: " << largest_product_opt<13>() << std::endl;
  }
  return 0;
}
#endif

See Also

# cpp go java php ruby rust javascript
1
2
3  
4    
5    
6      
7          
8          
9          
10          
11          
12          
# cpp ruby
13
14
15
16
17
18
19
20  
21  
22  
23  
24